Almost Periodic Functions and Representations of the Free Group on Two Generators

Stefanie Wang

Iowa State University Department of Mathematics

Workshop in Noncommutative Analysis June 2016

Quasigroups

Definition

A quasigroup $(Q, \cdot, /, \setminus)$ is an algebra with three binary operations, multiplication ·, right division /, and left division \ such that for all $x, y \in Q$

$$y \setminus (y \cdot x) = x = (x \cdot y)/y \tag{1}$$

$$y \cdot (y \setminus x) = x = (x/y) \cdot y \tag{2}$$

are satisfied.

Definition

A pique is a quasigroup $(Q,\cdot,/,\setminus)$ with a pointed idempotent element e such that $e \cdot e = e$.

Linear Piques

Definition

A quasigroup $(A, \cdot, /, \setminus)$ is said to be \mathbb{Z} -linear if there is a unital \mathbb{Z} -module structure (A, +, 0), with automorphisms λ and ρ such that

Quasigroup Module Theory

$$x \cdot y = x^{\rho} + y^{\lambda}, \ x/y = (x - y^{\lambda})^{\rho^{-1}}, \text{ and } x \setminus y = (y - x^{\rho})^{\lambda^{-1}}$$
 (3)

for $x, y \in A$.

Examples of piques:

- $(\mathbb{Z}/4, x \circ_1 y = x(123) + y(12))$ $2 \circ_1 1 = 2(1 \ 2 \ 3) + 1(1 \ 2) = 3 + 2 = 5 \equiv 1$
- (\mathbb{Z} -linear) ($\mathbb{Z}/4, x \circ_2 y = x(1\ 3) + y(1\ 3)$)
- (Z-linear) Integers under subtraction

Definition

Let $(A, \cdot, /, \setminus)$ be a \mathbb{Z} -linear pique such that $x \cdot y = x\rho + y\lambda$. Let $\langle R, L \rangle$ be the free group on two generators. A \mathbb{Z} -linear representation of $(A, \cdot, /, \setminus)$ is a homomorphism $\alpha: \langle R, L \rangle \to \operatorname{Aut}(A, +, 0)$.

Quasigroup Module Theory

Definition

Let $\alpha: \langle R, L \rangle \to \operatorname{Aut}(A, +, 0)$ and $\beta: \langle R, L \rangle \to \operatorname{Aut}(B, +, 0)$ be \mathbb{Z} -linear representations. We say α, β are isomorphic representations if there exists a \mathbb{Z} -module isomorphism $f: A \to B$ such that for all $g \in \langle R, L \rangle$, the following diagram commutes:

$$\begin{array}{ccc}
A & \xrightarrow{g^{\alpha}} & A \\
f \downarrow & & \downarrow f \\
B & \xrightarrow{g^{\beta}} & B
\end{array}$$

Isomorphism of Z-Linear Piques

Theorem (Isomorphism of Z-Linear Piques)

Let (A, \circ_1) and (B, \circ_2) be two \mathbb{Z} -linear piques. The piques are isomorphic if and only if there exists a pair of equivalent representations of each pique.

Proof

Suppose $f:(A,\circ_1)\to (B,\circ_2)$ is a pique isomorphism, i.e. for all $x,y\in A$, $(x\circ_1 y)f=xf\circ_2 yf$. Let $\alpha:\langle R,L\rangle\to \operatorname{Aut}(A,+,0)$ and $\beta:\langle R,L\rangle\to\operatorname{Aut}(B,+,0)$ be $\mathbb Z$ -linear representations. Observe

$$aR^{\alpha}f = (a \circ_1 0)^f = a^f \circ_2 0 = a^f R^{\beta},$$
 (4)

$$aL^{\alpha}f = (0 \circ_1 a)^f = 0 \circ_2 a^f = a^f L^{\beta}.$$
 (5)

Then for all $a \in A$, $g \in \langle R, L \rangle$, $ag^{\alpha}f = afg^{\beta}$ holds.

(4日) (個) (基) (基) (基)

Isomorphism of Z-Linear Piques

Proof (cont.)

Conversely, suppose $\alpha: \langle R, L \rangle \to \operatorname{Aut}(A, +, 0)$ and $\beta: \langle R, L \rangle \to \operatorname{Aut}(B, +, 0)$ are isomorphic \mathbb{Z} -linear representations.

- Let $f: A \to B$ be the intertwining, i.e. for all $a \in A, g \in \langle R, L \rangle$, $ag^{\alpha}f = afg^{\beta}$.
- Need to verify $x, y \in A$, $(x \circ_1 y)f = xf \circ_2 yf$.
- Then

$$(x \circ_1 y)^f = (xR^\alpha + yL^\alpha)f \tag{6}$$

$$= (xR^{\alpha})f + (yL^{\alpha})f \tag{7}$$

$$= x^f R^{\beta} + y^f L^{\beta} \tag{8}$$

$$= x^f \circ_2 y^f \tag{9}$$

Multiplication Groups

Recall from the quasigroup definition

$$y \cdot (y \setminus x) = x = (x/y) \cdot y.$$

Quasigroup Module Theory

Definition

For a quasigroup $(Q, \cdot, /, \setminus)$, one has *right multiplication* $R_Q(q)$ or $R_{\cdot}(q)$ defined as

$$R(q): Q \to Q; x \mapsto x \cdot q$$
 (10)

and left multiplication $L_Q(q)$ or $L_1(q)$ defined as

$$L(q): Q \to Q; x \mapsto q \cdot x.$$
 (11)

Universal Stabilizer

Cayley graph of Q is defined to be the labeled directed graph with vertex set Q. For $(x, y) \in Q \times Q$, there are two directed edges,

$$R(x \setminus y) := \langle x, R(x \setminus y), y \rangle \text{ or } x \xrightarrow{R(x \setminus y)} y$$
 (12)

and

$$L(x \swarrow y) := \langle x, L(y/x), y \rangle \text{ or } y \xleftarrow{L(y/x)} x. \tag{13}$$

Remark

Paths in the Cayley graph are words in the universal multiplication group.

Definition

Let Q be a quasigroup with fixed element e. The universal stabilizer \tilde{G}_{ϵ} of $e \in Q$ in the category **Q** is the free group of loops based at the vertex e.

Bohr compactification

Let Q be a quasigroup with fixed element e.

Equip \tilde{G}_e with discrete topology.

Bohr compactification of \tilde{G}_e is K = K(Q).

Sketch of Bohr compactification:

• $U(V_i)$ - unitary groups of finite-dimensional complex inner product spaces V_i .

Quasigroup Module Theory

- Take $\{\alpha_i: \tilde{G}_e \to U(V_i) | i \in I\}$ of representatives for the equivalence classes of continuous representations $\alpha_i: \tilde{G}_e \to U(V_i)$
- $\prod_{i \in I} \alpha_i : \tilde{G}_e \to \prod_{i \in I} U(V_i)$ and $K = \overline{(\tilde{G}_e)} \prod_{i \in I} \alpha_i$
- For $i \in I$, $U(V_i)$ is closed and bounded, so $\prod_{i \in I} U(V_i)$ is compact.
- K a closed subset, so K is compact

Quasigroup Modules

Definition

For a quasigroup Q, a Q-module is an abelian group object $p: E \to Q$ in the category \mathbf{Q}/Q of quasigroups over Q. Objects in this categories are morphisms whose codomain is Q.

Morphisms in this category:

If $g: E' \to E$ is such that $fg = id_{p:E \to Q}$ and $gf = id_{p':E \to Q}$, then p, p'isomorphic.

Ordinary Q-modules

Ordinary Q-modules are finite-dimensional complex vector spaces.

Take $e \in Q$.

 $V = p^{-1}\{e\}$ is a finite-dimensional unitary \tilde{G}_e -module.

Corresponds to a finite-dimensional continuous unitary representation $\sigma_F: K \to U(V).$

Theorem (Theorem 12.3, Smith)

Each ordinary Q-module p: $E \to Q$ with $V = p^{-1}\{e\}$ is determined (up to equivalence) by the corresponding finite-dimensional continuous unitary representation $\sigma_E: K \to U(V)$ of the Bohr compactification K = K(Q) of Ĝe.

Almost-periodic Functions

Definition

Let $p: E \to Q$ be an ordinary Q-module, and $\sigma_E: K \to U(p^{-1}\{e\})$ the corresponding finite-dimensional unitary continuous representation of the Bohr compactification K = K(Q) of \tilde{G}_e , as in Theorem 12.3. Then the analytical character χ_E of E is the restriction to \tilde{G}_e of the character $\chi_{\sigma_E}: K \to \mathbb{C}; x \mapsto \mathsf{Tr}_{\sigma_E}(x) \text{ of } \sigma_E.$

Let $f: K \to \mathbb{C}$ be a continuous function. The restriction of f to \tilde{G}_e is known as an almost-periodic function on G_e .

Almost-periodic Functions

Theorem (Theorem 12.4, Smith)

Let E be an ordinary Q-module. Then E is classified up to equivalence by its analytical character χ_E , which is an almost-periodic function on the universal stabilizer \tilde{G}_e of e in Q.

We will consider Q as the singleton $\{e\}$.

Constructing Character Tables

Consider the pique $(\mathbb{Z}/4, x(13) + y(13))$. Let $\alpha: \langle R, L \rangle \to \operatorname{Aut}(\mathbb{Z}/4, +, 0)$ be a representation. Observe:

$$\begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 2 & 1 \end{bmatrix}$$

Quasigroup Module Theory

Set
$$L^{\alpha}$$
, $R^{\alpha} := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$, so $\chi_{\alpha}(R) = \chi_{\alpha}(L) := 2$.

Remark

Z-Linear Piques

Let $(A, \cdot, /, \setminus)$. For $g \in \langle R, L \rangle$ and $\alpha : \langle R, L \rangle \to \operatorname{Aut}(A, +, 0)$, $\chi(g)$ corresponds to the number of fixed points of the permutation for ρ, λ .

A Curious Example on $\mathbb{Z}/5$ Piques

$$\operatorname{Aut}(\mathbb{Z}/5) \simeq (\mathbb{Z}/5)^\times = \{1,2,3,4\}$$

Unit	1	2	3	4
Permutation	(1)	(1 2 4 3)	(1 3 4 2)	(1 4)(2 3)

Look at $(\mathbb{Z}/5, x \circ_1 y = x + 2y)$ and $(\mathbb{Z}/5, x \circ_2 y = x + 3y)$

$x \cdot y =$	$R \mapsto$	$L \mapsto$	$\chi(R)$	$\chi(L)$	$\chi(L^2)$	$\chi(L^3)$
x + 2y	(1)	(1243)	5	1	1	1
x + 3y	(1)	(1 3 4 2)	5	1	1	1

For all $x, y \in \mathbb{Z}/5$,

$$(x \circ_1 x) \circ_1 x = (y \circ_1 y) \circ_1 y \tag{14}$$

$$(x \circ_2 x) \circ_2 x \neq (y \circ_2 y) \circ_2 y \tag{15}$$

ㅁㅏ ◀♬ㅏ ◀ㅌㅏ ◀ㅌㅏ - ㅌ - 쒸٩@

Linear Piques on $\mathbb{Z}/5$

Other cases:

$${2x+2y,3x+3y}, {2x+y,3x+y}, {4x+2y,4x+3y}, {2x+4y,3x+4y}.$$

Quasigroup Module Theory

Lemma

If two linear piques $(\mathbb{Z}/5, \circ_1)$ and $(\mathbb{Z}/5, \circ_2)$ have the same ordinary character, the corresponding ordinary representations of $\langle R, L \rangle$ are similar via a permutation matrix P.

$$(2\ 3)(1\ 3\ 4\ 2)(2\ 3) = (1\ 2\ 4\ 3)$$

 $(2\ 3)(1\ 4)(2\ 3)(2\ 3) = (1\ 4)(2\ 3)$

What other linear piques have this property?

Let $n = p^k$ where p is an odd prime and $k \in \mathbb{Z}^+$.

Lemma

If two linear piques defined on \mathbb{Z}/n have the same ordinary character for representations α_1, α_2 of $\langle R, L \rangle$, then ρ, λ in the respective piques have the same cycle type.

Quasigroup Module Theory

Lemma

Let λ_1, λ_2 represent left multiplication by 0 in two linear piques $(\mathbb{Z}/n, \circ_1), (\mathbb{Z}/n, \circ_2)$. If λ_1 and λ_2 are nontrivial elements and there exists $b \in \operatorname{Aut}(\mathbb{Z}/n)$ that conjugates them, then $\lambda_1 = \lambda_2$.

Proof.

Recall $\operatorname{Aut}(\mathbb{Z}/n) \cong (\mathbb{Z}/n)^{\times}$. Suppose $b \in (\mathbb{Z}/n)^{\times}$ such that $b\lambda_1 b^{-1} = \lambda_2$. Since $(\mathbb{Z}/n)^{\times}$ is abelian, it follows $\lambda_1 = \lambda_2$.

Isomorphism of Ordinary Representations of $\langle R, L \rangle$

Quasigroup Module Theory

Lemma

Let $(\mathbb{Z}/n, \circ_1), (\mathbb{Z}/n, \circ_2)$ be two linear piques with isomorphic ordinary representations α_1, α_2 of $\langle R, L \rangle$ such that L and R have the same cycle type in $\operatorname{Aut}(\mathbb{Z}/n)$. Then the ordinary representations are similar by a permutation matrix.

Theorem

Let $(\mathbb{Z}/n, \circ_1)$ and $(\mathbb{Z}/n, \circ_2)$ be two \mathbb{Z} -linear piques. If they yield equivalent ordinary representations α_1, α_2 of $\langle R, L \rangle$, then α_1 and α_2 are similar by a permutation matrix.

Modules over Arbitrary Unital Rings

Definition

Let S be a unital ring. Let A be a right module over S. A quasigroup $(A,\cdot,/,\setminus)$ is said to be S-linear if there is a unital S-module structure (A,+,0), with automorphisms λ and ρ such that

$$x \cdot y = x^{\rho} + y^{\lambda}, \ x/y = (x - y^{\lambda})^{\rho^{-1}}, \text{ and } x \setminus y = (y - x^{\rho})^{\lambda^{-1}}$$
 (16)

for $x, y \in A$.

Theorem

Let (A, \circ_1) and (B, \circ_2) be two S-linear piques. The piques are isomorphic if and only if there exists a pair of equivalent representations of the free group on two generators $\alpha_1, \alpha_2 : \langle R, L \rangle \to \operatorname{Aut}(A, +, 0)$.

Reference

Smith, Jonathan DH. An Introduction to Quasigroups and Their Representations. 2006.

Applications of Quasigroup Module Theory

Thank you!